Actividad Antifúngica de Bacterias Contra Botrytis cinerea y Colletotrichum sp. que Afectan a la Fresa

Antifungal Activity of Bacteria Against Botrytis cinerea and Colletotrichum sp. Affecting Strawberry

Autores/as

  • Edith Garay Serrano
  • Paula Pérez Cupa

DOI:

https://doi.org/10.57737/jqnnxg27

Palabras clave:

Gluconobacter, Paenibacillus, Streptomyces, antracnosis, moho gris

Resumen

México es el quinto productor a nivel mundial de fresa y el Estado de Michoacán el principal proveedor nacional, aportando más del 62% de esta fruta. Dos de los principales patógenos de la fresa son Botrytis cinerea causando pudrición de fruto y especies de Colletotrichum induciendo antracnosis. Debido a la necesidad de evaluar microorganismos nativos cultivables que puedan ser usados como control biológico, se planteó este trabajo que tiene como objetivo evaluar la capacidad antagónica que ofrecen bacterias de distintos géneros (Bacillus, Gluconobacter, Paenibacillus y Streptomyces) contra los patógenos B. cinerea y Colletotrichum sp.) en confrontaciones in vitro. Los hongos se aislaron del fruto infectado y una vez purificados, fueron enfrentados en cultivos duales, contra las bacterias en medio de cultivo de PDA, obteniéndose el porcentaje de inhibición tras siete días de crecimiento. Las cuatro bacterias mostraron alta capacidad de inhibición: las especies de Bacillus aff. siamensis  y Streptomyces aff. daghestanicus, fueron las que inhibieron en más de 80% el crecimiento del micelio de Colletotrichum, mientras que Bacillus aff. siamensis y Gluconobacter cerinusdisminuyeron a B. cinerea en más del 79%. Este trabajo servirá para profundizar en el estudio y la evaluación de la actividad antifúngica de organismos para combatir patógenos del cultivo de fresa.

 

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Abad ZG, Burgess T, Bienapfl JC, Redford AJ, Coffey M, Knight L. 2019. IDphy: Molecular and morphological identification of Phytophthora based on the types. USDA APHIS PPQ S&T Beltsville Lab, USDA APHIS PPQ S&T ITP, Centre for Phytophthora Science and Management, and World Phytophthora Collection. https://idtools.org/id/phytophthora/in- dex.php

Bouchard-Rochette, M., Machrafi, Y., Cossus, L., Nguyen, T. T. A., Antoun, H., Droit, A., & Tweddell, R. J. (2022). Bacillus pumilus PTB180 and Bacillus subtilis PTB185: Production of lipopeptides, antifungal activity, and biocontrol ability against Botrytis cinerea. Biological Control, 170, 104925. https://doi.org/10.1016/j.biocontrol.2022.104925

Boukaew, S., Prasertsan, P., Troulet, C., & Bardin, M. (2017). Biological control of tomato gray mold caused by Botrytis cinerea by using Streptomyces spp. BioControl, 62, 793-803. https://doi.org/10.1007/s10526-017-9825-9

Cruz-Palacios. 2019. Informe de estancia: Trabajo de campo y laboratorio para la investigación de organismos antagónicos de hongos fitopatógenos en fresa. Universidad Tecnológica del Oriente de Michoacán.

Delgado, N., Olivera, M., Cádiz, F., Bravo, G., Montenegro, I., Madrid, A., ... & Besoain, X. (2021). Volatile organic compounds (VOCs) produced by Gluconobacter cerinus and Hanseniaspora osmophila displaying control effect against table grape-rot pathogens. Antibiotics, 10(6), 663.

Dobrzyński, J., & Naziębło, A. (2024). Paenibacillus as a Biocontrol Agent for Fungal Phytopathogens: Is P. polymyxa the Only One Worth Attention?. Microbial Ecology, 87(1), 134.

Elamathi, E., Malathi, P., Viswanathan, R., & Sundar, A. R. 2016. Potential of Paenibacillus and Trichoderma isolates against Colletotrichum falcatum causing red rot disease in sugarcane.

Elmer, P. A., & Michailides, T. J. (2007). Epidemiology of Botrytis cinerea in orchard and vine crops. In Botrytis: biology, pathology and control (pp. 243-272). Dordrecht: Springer Netherlands. https://link.springer.com/content/pdf/10.1007/978-1-4020-2626-3.pdf#page=255

Es-Soufi, R., Tahiri, H., Azaroual, L., El Oualkadi, A., Martin, P., Badoc, A., & Lamarti, A. 2020. In Vitro Antagonistic Activity of Trichoderma harzianum and Bacillus amyloliquefaciens against Colletotrichum acutatum. Advances in Microbiology, 10(3), 82-94. https://doi.org/10.4236/aim.2020.103008

Evangelista-Martínez, Z. 2014. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens. World Journal of Microbiology and Biotechnology, 30, 1639-1647. https://doi.org/10.1007/s11274-013-1568-x

Garay-Serrano, E., Cruz-Esteban, S., Fernández-Pavia, S. P. F., Rodríguez-Alvarado, G. A., & Gómez-Dorantes, N. (2021). Pathogenic microorganisms infecting berries in Mexico. International Journal of Agriculture y Biology, 25(5), 1007-1015. DOI: 10.17957/IJAB/15.1758

Giampieri, F., Alvarez-Suarez, J. M., & Battino, M. (2014). Strawberry and human health: Effects beyond antioxidant activity. Journal of agricultural and food chemistry, 62(18), 3867-3876. https://doi.org/10.1021/jf405455n

Guevara-Avendaño, E., Carrillo, J. D., Ndinga-Muniania, C., Moreno, K., Méndez-Bravo, A., Guerrero-Analco, J. A., Eskalen A., and Reverchon, F. (2018). Antifungal activity of avocado rhizobacteria against Fusarium euwallaceae and Graphium spp., associated with Euwallacea spp. nr. fornicatus, and Phytophthora cinnamomi. Antonie Van Leeuwenhoek, 111, 563-572. https://doi.org/10.1007/s10482-017-0977-5

Hernández-Muñoz, P., Almenar, E., Ocio, M.J. y Gavara, R. 2006. Effect of calcium dips and chitosan coacting on postharvest life of strawberries (Fragaria x ananassa). Postharvest Biology and Technology. 39:247-253. https://doi.org/10.1016/j.postharvbio.2005.11.006

Howard, C.M., Maas, J.L., Chandler, C.K. and Albregts, E.E. (1992) Anthracnose of strawberry caused by the Colletotrichum complex in Florida. Plant Disease, 76, 976–981.

Lane D. J. 1991. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. New York, NY: John Wiley & Sons, Inc. pp. 115-175.

Lee, B. Y., Chen, P. L., & Chen, C. Y. (2024). Suppression of strawberry anthracnose by Paenibacillus polymyxa TP3 in situ and from a distance. Plant Disease, 108(3), 700-710. https://doi.org/10.1094/PDIS-08-23-1499-RE

Li, X., Jing, T., Zhou, D., Zhang, M., Qi, D., Zang, X., ... & Xie, J. 2021. Biocontrol efficacy and possible mechanism of Streptomyces sp. H4 against postharvest anthracnose caused by Colletotrichum fragariae on strawberry fruit. Postharvest Biology and Technology, 175, 111401. https://doi.org/10.1016/j.postharvbio.2020.111401

Ezziyyani, M.; Pérez-Sánchez, C.; Requena, M. E.; Rubio, L. y Candela, M. E. 2004. Biocontrol por Streptomyces rochei -Ziyani-, de la podredumbre del pimiento (Capsicum annuum L.) causada por Phytophthora capsici. Anales de Biología. 26:69-78

Lumînare, M. C., Boiu-Sicuia, O. A., Cojanu, D. N., Buturugă-Barbu, L. D. N., & Cristea, S. (2023). In vitro antagonist activity of Bacillus spp. strains against Botrytis cinerea in strawberry crop. Romanian Journal for Plant Protection, 16.

Muthukumarasamy, R., Revathi, G., Vadivelu, M., 2000. Antagonistic potential of N2 fixing Acetobacter diazotrophicus against Colletotrichum falcatum Went, a causal organism of red-rot of sugarcane. Curr. Sci. 78, 1063e1065. https://www.jstor.org/stable/24103614

Passera, A., Venturini, G., Battelli, G., Casati, P., Penaca, F., Quaglino, F., & Bianco, P. A. (2017). Competition assays revealed Paenibacillus pasadenensis strain R16 as a novel antifungal agent. Microbiological Research, 198, 16-26. https://doi.org/10.1016/j.micres.2017.02.001

Petrasch, S., Knapp, S. J., Van Kan, J. A., & Blanco‐Ulate, B. (2019). Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Molecular plant pathology, 20(6), 877-892. https://doi.org/10.1111/mpp.12794

SIAP. (2024). Servicio de información y Estadística Agroalimentaria y Pesquera. Panorama Agroalimentario 2024. Secretaría de Agricultura de Desarrollo Rural, México. 208pp. https://www.gob.mx/siap/es/articulos/panorama-agroalimentario-2018-2024-la-herramienta-basica-de-consulta-estadistica-del-sector-agropecuario-y-pesquero?idiom=es

Smith, B. J. (2008). Epidemiology and pathology of strawberry anthracnose: a North American perspective. HortScience, 43(1), 69-73. https://doi.org/10.21273/HORTSCI.43.1.69

Shternshis, M. V., Belyaev, A. A., Shpatova, T. V., & Lelyak, A. A. (2015). Influence of Bacillus spp. on strawberry gray-mold causing agent and host plant resistance to disease. Contemporary Problems of Ecology, 8, 390-396. https://doi.org/10.1134/S1995425515030130

Tram, T. T. N., Quang, H. T., Vu, N. Q. H., Nguyen, P. T. T., Thi, T. N. M., Phuong, T. T. B., & Thi, P. T. D. 2023. Isolation of bacteria displaying potent antagonistic activity against fungi causes anthracnose disease in chili. Biodiversitas Journal of Biological Diversity, 24(9). https://doi.org/10.13057/biodiv/d240934

Wu, Y. M., Chen, X., Wang, F., Hsiao, C. Y., Yang, C. Y., Lin, S. T., ... & Lin, Y. H. 2021. Bacillus amyloliquefaciens strains control strawberry anthracnose through antagonistic activity and plant immune response intensification. Biological Control, 157, 104592. https://doi.org/10.1016/j.biocontrol.2021.104592

Publicado

2024-12-27