Sobresalientes Potencialidades de las Bacterias del Género Bacillus para el Biocontrol de Fitopatógenos y para Biorremediación
Outstanding Potential of Bacillus Genus Bacteria for Phytopathogen Biocontrol and Bioremediation
DOI:
https://doi.org/10.57737/cn4jbm50Palabras clave:
menor uso de plaguicidas, control biológico, biotecnología del biocontrolResumen
Los consumidores, cada vez mas concientes de los riesgos que implica los resíduos tóxicos derivados del uso de plaguicidas, estan exigiendo productos agrolimentarios con mayores garantías de inocuidad. Esto ha motivado en la investigación, la búsqueda de alternativas para protección de los cultivos para mantener a raya a plagas y microorgnismos patógenos, con menor uso de pesticidas. El biocontrol, que hace uso de organismos o productos derivados de estos para disminuir a los organismos perjudiciales, y favorecer el pleno desarrollo de las plantas, es una opción que logra mas adeptos en el sector productivo y en los consumidores. Los agentes de biocontrol mas utilizados para el confeccionado de protocolos para cultivos específicos, descansa básicamente en especies de Bacillus, Pseudomonas y Trichoderma. En Bacillus, cinco especies son las mas investigadas y utilizadas, entre ellas B. velezensis, B. subtilis y B. amyloliquefaciens. Sobresale Bacillus con múltiples modalidades para impactar en el crecimiento de las plantas; pueden inhibir a los fitopatógenos con una variedad de antibióticos que sintetizan, pueden promover el crecimiento de las plantas con las moléculas tipo fitohormonas que pueden producir, pueden proveer a las plantas con mayores cantidades de elementos nutritivos mediante la solubilización y biodisponibilidad de estos en el suelo, y pueden activar en plantas la resistencia sistémica para darle mas fortaleza ante el ataque de fitopatógenos. En biorremediación, Bacillus destaca por su capacidad para quelar elementos tóxicos como los metales pesados, atraerlos y procesarlos con la disminución o eliminación de su toxicidad. Similarmente, pueden ayudar en la degradación de los herbicidas. Con genómica y bioinformática, y con acompañamiento de inteligencia artificial (IA) se imprime una mayor velocidad en el desasrrollo de nuevas herramientas de biotecnología, que habrán de dar cuenta de cultivos mas sanos con mayores rendimientos, y con menor uso de pesticidas.
Descargas
Referencias
Aguado-Santacruz, G. A., Moreno-Gómez, B., Jiménez-Franco, B., García-Moya, E., & Preciado-Ortiz, E. (2012). Impact of the microbial siderophores and phytosiderophores on the iron assimilation by plants: a synthesis. Rev Fitotecnia Mexicana, 35(1), 4.
Ait Kaki, A., Kacem Chaouche, N., Dehimat, L., Milet, A., Youcef-Ali, M., Ongena, M., & Thonart, P. (2013). Biocontrol and Plant Growth Promotion Characterization of Bacillus Species Isolated from Calendula officinalis Rhizosphere. Indian J Microbiol, 53(4), 447-452. doi:10.1007/s12088-013-0395-y
Akinrinlola, R. J., Yuen, G. Y., Drijber, R. A., & Adesemoye, A. O. (2018). Evaluation of Bacillus Strains for Plant Growth Promotion and Predictability of Efficacy by In Vitro Physiological Traits. Int J Microbiol, 2018, 5686874. doi:10.1155/2018/5686874
Akram, W., Anjum, T., & Ali, B. (2016). Phenylacetic Acid Is ISR Determinant Produced by Bacillus fortis IAGS162, Which Involves Extensive Re-modulation in Metabolomics of Tomato to Protect against Fusarium Wilt. Front Plant Sci, 7, 498. doi:10.3389/fpls.2016.00498
Arrieta-Ramírez, O. A., Rivera-Rivera, A. P., Arias-Marín, L., & Cardona-Gallo, S. A. (2012). Bioremediation of soil with diesel Throug the use of autochthonous microorganisms. Rev. Gestión y Ambiente, 15(1), 13.
Bala, S., Garg, D., Thirumalesh, B. V., Sharma, M., Sridhar, K., Inbaraj, B. S., & Tripathi, M. (2022). Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics, 10(8). doi:10.3390/toxics10080484
Balderas-León I., & Sánchez-Yáñez JM. (2015). Biorremediation of soil polluted by 75000 ppm of waste motor oil applying biostimulation
and phytoremediation with Sorghum vulgare and Bacillus cereus or Burkholderia cepacia. J of the Selva Andina Research Society, 6(1), 9.
Benavides-Lopez, D. M., J.,, Quintero, G., Guevara, V., & Miranda-García, J. (2006). Bioremediation of contamined soils with hidrocarbons derived from petroleum. NOVA Publ. Cient., 4(5), 8.
Choudhary, D. K., & Johri, B. N. (2009). Interactions of Bacillus spp. and plants--with special reference to induced systemic resistance (ISR). Microbiol Res, 164(5), 493-513. doi:10.1016/j.micres.2008.08.007
Choudhary, D. K., Prakash, A., & Johri, B. N. (2007). Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol, 47(4), 289-297. doi:10.1007/s12088-007-0054-2
Curie, C., & Briat, J. F. (2003). Iron transport and signaling in plants. Annu Rev Plant Biol, 54, 183-206. doi:10.1146/annurev.arplant.54.031902.135018
De la Cruz-Rodriguez, Y., Adrian-Lopez, J., Martinez-Lopez, J., Neri-Marquez, B. I., Garcia-Pineda, E., Alvarado-Gutierrez, A., & Fraire-Velazquez, S. (2023). Biosynthetic Gene Clusters in Sequenced Genomes of Four Contrasting Rhizobacteria in Phytopathogen Inhibition and Interaction with Capsicum annuum Roots. Microbiol Spectr, 11(3), e0307222. doi:10.1128/spectrum.03072-22
de Oliveira-Paiva, C. A., Bini, D., de Sousa, S. M., Ribeiro, V. P., Dos Santos, F. C., de Paula Lana, U. G., . . . Marriel, I. E. (2024). Inoculation with Bacillus megaterium CNPMS B119 and Bacillus subtilis CNPMS B2084 improve P-acquisition and maize yield in Brazil. Front Microbiol, 15, 1426166. doi:10.3389/fmicb.2024.1426166
Dell' Anno, F., Rastelli, E., Sansone, C., Brunet, C., Ianora, A., & Dell' Anno, A. (2021). Bacteria, Fungi and Microalgae for the Bioremediation of Marine Sediments Contaminated by Petroleum Hydrocarbons in the Omics Era. Microorganisms, 9(8). doi:10.3390/microorganisms9081695
Dhanalakshmi, V., & Rajendhran, J. (2024). Whole-Genome Sequencing And Characterization Of Two Bacillus velezensis Strains from Termitarium and A Comprehensive Comparative Genomic Analysis of Biosynthetic Gene Clusters. Curr Microbiol, 81(12), 449. doi:10.1007/s00284-024-03965-6
Ding, C., Liu, W., & Chai, L. (2024). Advances in mechanism for the microbial transformation of heavy metals: implications for bioremediation strategies. Chem Commun (Camb), 60(85), 12315-12332. doi:10.1039/d4cc03722g
Domenech J, & Gutierrez-Mañero. (2006). Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Biocontrol, 51, 13.
Dong, Q., Chang, Y., Goodwin, P. H., Liu, Q., Xu, W., Xia, M., . . . Yang, L. (2024). Double-Wing Motif Protein is a Novel Biofilm Regulatory Factor of the Plant Disease Biocontrol Agent, Bacillus subtilis. J Agric Food Chem, 72(37), 20273-20285. doi:10.1021/acs.jafc.4c02192
Dutta, S., Rani, T. S., & Podile, A. R. (2013). Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion. PLoS One, 8(10), e78369. doi:10.1371/journal.pone.0078369
Erturk Y., Ercisli S., & R., C. (2012). Yield and growth response of strawberry to plant growth-promoting rhizobacteria inoculation. J Plant Nutrition, 35(6), 9. doi:https://doi.org/10.1080/01904167.2012.663437
Fazle Rabbee, M., & Baek, K. H. (2020). Antimicrobial Activities of Lipopeptides and Polyketides of Bacillus velezensis for Agricultural Applications. Molecules, 25(21). doi:10.3390/molecules25214973
Fraire-Mayorga, & Fraire-Velázquez. (2020). Bacterias Bacillus sp. de suelo y de rizósfera en consorcio para el biocontrol de fitopatógenos de la raíz en Capsicum annuum L. . Investigación científica, 14(2), 10.
Glick, B. R. (2004). Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol, 56, 291-312. doi:10.1016/S0065-2164(04)56009-4
Hernández-Caricio, Ramírez-V, Martínez-J, & Rosas-Murrieta. (2022). Los metales pesados en la historia de la humanidad, los efectos de la contaminación por metales pesados y los procesos biotecnológicos para su eliminación: el caso de Bacillus como bioherramienta para la recuperación de suelos. . Alianzas y Tendencias BUAP, 7(27), 68.
Hernández-Ruiz GM., Alvarez-Orozco NA., & Ríos-Osorio LA. (2016). Bioremediagtion of organophosphates by fungi and bacteria in agricultural soils. A systematic review. Ciencia y Tecnología Agropecuaria, 18(1), 20. doi:http://dx.doi.org/10.21930/rcta.vol18_num1_art:564
Hu, H., Wang, C., Li, X., Tang, Y., Wang, Y., Chen, S., & Yan, S. (2018). RNA-Seq identification of candidate defense genes targeted by endophytic Bacillus cereus-mediated induced systemic resistance against Meloidogyne incognita in tomato. Pest Manag Sci, 74(12), 2793-2805. doi:10.1002/ps.5066
Huang, Y., Zhang, X., Xu, H., Zhang, F., Zhang, X., Yan, Y., . . . Liu, J. (2022). Isolation of lipopeptide antibiotics from Bacillus siamensis: a potential biocontrol agent for Fusarium graminearum. Can J Microbiol, 68(6), 403-411. doi:10.1139/cjm-2021-0312
Huertas C., & Guevara-Ocampo N. (2016). Identificación de bacterias del suelo resistentes al arsénico como candidatas en procesos de biorremediación. Suelos Ecuatoriales, 46(1), 9.
Jain, A., & Bahadur Singh, H. (2012). Microbial consortium–mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. Journal of Applied Microbiology, 112(3), 537-550. doi:10.1111/j.1365-2672.2011.05220.x
Ji, C., Chen, Z., Kong, X., Xin, Z., Sun, F., Xing, J., . . . Cao, H. (2022). Biocontrol and plant growth promotion by combined Bacillus spp. inoculation affecting pathogen and AMF communities in the wheat rhizosphere at low salt stress conditions. Front Plant Sci, 13, 1043171. doi:10.3389/fpls.2022.1043171
Kumar, K., & Jagadeesh, K. (2016). Microbial consortia-mediated plant defense against phytopathogens and growth benefits. South Indian Journal of Biological Sci, 2(4), 8.
Lee, J., Kim, S., Jung, H., Koo, B. K., Han, J. A., & Lee, H. S. (2023). Exploiting bacterial genera as biocontrol agents: Mechanisms, interactions and applications in sustainable agriculture. J Plant Pathol, 66(6), 13. doi:https://ui.adsabs.harvard.edu/abs/2023JPBio..66..485L
Lerner, C. G., Stephenson, B. T., & Switzer, R. L. (1987). Structure of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster. J Bacteriol, 169(5), 2202-2206. doi:10.1128/jb.169.5.2202-2206.1987
Maheshwari, D. K., Dubey, R. C., Agarwal, M., Dheeman, S., Aeron, A., & Bajpai, V. K. (2015). Carrier based formulations of biocoenotic consortia of disease suppressive Pseudomonas aeruginosa KRP1 and Bacillus licheniformis KRB1. Ecological engineering, 81, 272-277. doi:https://doi.org/10.1016/j.ecoleng.2015.04.066
Massucato, L. R., Almeida, S. R. A., Silva, M. B., Mosela, M., Zeffa, D. M., Nogueira, A. F., . . . Goncalves, L. S. A. (2022). Efficiency of Combining Strains Ag87 (Bacillus megaterium) and Ag94 (Lysinibacillus sp.) as Phosphate Solubilizers and Growth Promoters in Maize. Microorganisms, 10(7). doi:10.3390/microorganisms10071401
McSpadden Gardener, B. B., & Driks, A. (2004). Overview of the Nature and Application of Biocontrol Microbes: Bacillus spp. Phytopathology, 94(11), 1244. doi:10.1094/PHYTO.2004.94.11.1244
Nalli, Y., Singh, S., Gajjar, A., Mahizhaveni, B., Dusthackeer, V. N. A., & Shinde, P. B. (2023). Bacillibactin class siderophores produced by the endophyte Bacillus subtilis NPROOT3 as antimycobacterial agents. Lett Appl Microbiol, 76(2). doi:10.1093/lambio/ovac026
Oliveira, D. F., Santos Junior, H. M., Nunes, A. S., Campos, V. P., Pinho, R. S., & Gajo, G. C. (2014). Purification and identification of metabolites produced by Bacillus cereus and B. subtilis active against Meloidogyne exigua, and their in silico interaction with a putative phosphoribosyltransferase from M. incognita. An Acad Bras Cienc, 86(2), 525-538. doi:10.1590/0001-3765201402412
Othoum, G., Bougouffa, S., Razali, R., Bokhari, A., Alamoudi, S., Antunes, A., . . . Essack, M. (2018). In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters. BMC Genomics, 19(1), 382. doi:10.1186/s12864-018-4796-5
Palmieri, D., & Lima, G. (2017). A microbial consortium in the rhizosphere as a new biocontrol approach against fusarium decline of chickpea. Plant and Soil, 412(1), 425-439. doi:10.1007/s11104-016-3080-1
Patiño-Hermoza, O., Robles-Castillo, H., & León-Mendoza, L. (2021). Biodegradation of petroleum by Bacillus thuringiensis as alternative for recuperation of agriculture soils. Arnaldoa, 28(2), 9. doi:http://doi.org/10.22497/arnaldoa.282.28205
Prigigallo, M. I., & Bubici, G. (2022). Designing a synthetic microbial community devoted to biological control: The case study of Fusarium wilt of banana. Front Microbiol, 13, 967885. doi:10.3389/fmicb.2022.967885
Saranya K, & V., K. (2020). Total Petroleum Hydrocarbons. Environmental Fate, Toxiciity, and Remediation (1 ed.). Switzerland: Springer Cham.
Shahid, M., Singh, U. B., Khan, M. S., Singh, P., Kumar, R., Singh, R. N., . . . Singh, H. V. (2023). Bacterial ACC deaminase: Insights into enzymology, biochemistry, genetics, and potential role in amelioration of environmental stress in crop plants. Front Microbiol, 14, 1132770. doi:10.3389/fmicb.2023.1132770
Sharma, P., Kumar, S., & Pandey, A. (2021). Bioremediated techniques for remediation of metal pollutants using metagenomics approaches: A review. J of environmental Chemical Engineering, 9(4). doi:https://doi.org/10.1016/j.jece.2021.105684
Shylla, L., Barik, S. K., & Joshi, S. R. (2021). Characterization and bioremediation potential of native heavy-metal tolerant bacteria isolated from rat-hole coal mine environment. Arch Microbiol, 203(5), 2379-2392. doi:10.1007/s00203-021-02218-5
Solanas, A. M. (2009). La biodegradación de hidrocarburos y su aplicación en la biorremediación de suelos. Estudios en la Zona no Saturada del Suelo, IX, 8.
Song, L., Nielsen, L. J. D., Xu, X., Mohite, O. S., Nuhamunada, M., Xu, Z., . . . Kovacs, A. T. (2024). Expanding the genome information on Bacillales for biosynthetic gene cluster discovery. Sci Data, 11(1), 1267. doi:10.1038/s41597-024-04118-x
Tan, A., Wang, H., Zhang, H., Zhang, L., Yao, H., & Chen, Z. (2024). Reduction of Cr(VI) by Bacillus toyonensis LBA36 and its effect on radish seedlings under Cr(VI) stress. PeerJ, 12, e18001. doi:10.7717/peerj.18001
Tian, Y., Zhong, F., Shang, N., Yu, H., Mao, D., & Huang, X. (2024). Maize Root Exudates Promote Bacillus sp. Za Detoxification of Diphenyl Ether Herbicides by Enhancing Colonization and Biofilm Formation. Mol Plant Microbe Interact, 37(7), 552-560. doi:10.1094/MPMI-02-24-0020-R
Toledo-Hernández E., Santana-Flores A., Sánchez-Ayala A., & J., T.-J. (2020). Identification and isolation of heavy-metal tolerant and bioaccumulator bacteria obtained from El Fraile mine tailings, Mexico. Terra Latinoamericana, 38. doi:10.28940/terra.v38i1.430
Viveros-Aguilar OA., Herrera-Alamillo MA., & LC., R.-Z. (2024). Bacillus: microorganismos versátiles para la biorremediación del suelo. . Desde el Herbario CICY, 16, 5. doi:http://www.cicy.mx/sitios/desde_herbario/
Vizuete-García RA., Pascual-Barrera AE., & Morales-Padilla MM. (2021). Biorremediación en suelos contaminados con hidrocarburos en Colombia. Rev. Lasallista de Investigación, 17(1), 10. doi:https://doi.org/10.22507/rli.v17n1a19
Wang, J., Li, X., Li, X., Wang, H., Su, Z., Wang, X., & Zhang, H. (2018). Dynamic changes in microbial communities during the bioremediation of herbicide (chlorimuron-ethyl and atrazine) contaminated soils by combined degrading bacteria. PLoS One, 13(4), e0194753. doi:10.1371/journal.pone.0194753
Woo, J. M., Kim, H. S., Lee, I. K., Byeon, E. J., Chang, W. J., & Lee, Y. S. (2024). Potentiality of Beneficial Microbe Bacillus siamensis GP-P8 for the Suppression of Anthracnose Pathogens and Pepper Plant Growth Promotion. Plant Pathol J, 40(4), 346-357. doi:10.5423/PPJ.OA.01.2024.0022
Wrobel, M., Sliwakowski, W., Kowalczyk, P., Kramkowski, K., & Dobrzynski, J. (2023). Bioremediation of Heavy Metals by the Genus Bacillus. Int J Environ Res Public Health, 20(6). doi:10.3390/ijerph20064964
Yadav, U., Anand, V., Kumar, S., Verma, I., Anshu, A., Pandey, I. A., . . . Singh, P. C. (2024). Bacillus subtilis NBRI-W9 simultaneously activates SAR and ISR against Fusarium chlamydosporum NBRI-FOL7 to increase wilt resistance in tomato. J Appl Microbiol, 135(3). doi:10.1093/jambio/lxae013
Yang, P., Yuan, P., Liu, W., Zhao, Z., Bernier, M. C., Zhang, C., . . . Xia, Y. (2024). Plant Growth Promotion and Plant Disease Suppression Induced by Bacillus amyloliquefaciens Strain GD4a. Plants (Basel), 13(5). doi:10.3390/plants13050672
Ye, Q., Zhong, Z., Chao, S., Liu, L., Chen, M., Feng, X., & Wu, H. (2023). Antifungal Effect of Bacillus velezensis ZN-S10 against Plant Pathogen Colletotrichum changpingense and Its Inhibition Mechanism. Int J Mol Sci, 24(23). doi:10.3390/ijms242316694
Yin, S., Zhang, X., Yin, H., & Zhang, X. (2022). Current knowledge on molecular mechanisms of microorganism-mediated bioremediation for arsenic contamination: A review. Microbiol Res, 258, 126990. doi:10.1016/j.micres.2022.126990
Zhang, L., Liu, Z., Pu, Y., Zhang, B., Wang, B., Xing, L., . . . Liu, N. (2024). Antagonistic Strain Bacillus velezensis JZ Mediates the Biocontrol of Bacillus altitudinis m-1, a Cause of Leaf Spot Disease in Strawberry. Int J Mol Sci, 25(16). doi:10.3390/ijms25168872